Copied to
clipboard

G = C24.16D10order 320 = 26·5

16th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.16D10, C23.16D20, (C2×C20)⋊7D4, C10.34C22≀C2, C2.7(C202D4), C2.8(C207D4), (C2×Dic5).65D4, (C22×D5).40D4, C22.243(D4×D5), (C22×C4).36D10, (C22×C10).70D4, C10.60(C4⋊D4), C22.127(C2×D20), C53(C23.10D4), C2.35(C22⋊D20), C10.36(C4.4D4), (C22×C20).62C22, (C23×C10).44C22, (C23×D5).17C22, C23.373(C22×D5), C10.10C4218C2, C2.11(Dic5⋊D4), C22.101(C4○D20), C22.98(D42D5), (C22×C10).335C23, C2.23(D10.12D4), C2.23(Dic5.5D4), C10.35(C22.D4), C2.17(C22.D20), (C22×Dic5).47C22, (C2×C4)⋊4(C5⋊D4), (C2×C22⋊C4)⋊9D5, (C2×C4⋊Dic5)⋊13C2, (C2×C23.D5)⋊6C2, (C2×D10⋊C4)⋊9C2, (C10×C22⋊C4)⋊12C2, (C2×C10).326(C2×D4), (C22×C5⋊D4).6C2, (C2×C10).81(C4○D4), C22.129(C2×C5⋊D4), SmallGroup(320,588)

Series: Derived Chief Lower central Upper central

C1C22×C10 — C24.16D10
C1C5C10C2×C10C22×C10C23×D5C2×D10⋊C4 — C24.16D10
C5C22×C10 — C24.16D10
C1C23C2×C22⋊C4

Generators and relations for C24.16D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=dc=cd, f2=d, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >

Subgroups: 998 in 238 conjugacy classes, 63 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C23.10D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C22×Dic5, C2×C5⋊D4, C22×C20, C23×D5, C23×C10, C10.10C42, C2×C4⋊Dic5, C2×D10⋊C4, C2×C23.D5, C10×C22⋊C4, C22×C5⋊D4, C24.16D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22≀C2, C4⋊D4, C22.D4, C4.4D4, D20, C5⋊D4, C22×D5, C23.10D4, C2×D20, C4○D20, D4×D5, D42D5, C2×C5⋊D4, C22⋊D20, D10.12D4, Dic5.5D4, C22.D20, C207D4, C202D4, Dic5⋊D4, C24.16D10

Smallest permutation representation of C24.16D10
On 160 points
Generators in S160
(1 104)(2 131)(3 106)(4 133)(5 108)(6 135)(7 110)(8 137)(9 112)(10 139)(11 114)(12 121)(13 116)(14 123)(15 118)(16 125)(17 120)(18 127)(19 102)(20 129)(21 156)(22 65)(23 158)(24 67)(25 160)(26 69)(27 142)(28 71)(29 144)(30 73)(31 146)(32 75)(33 148)(34 77)(35 150)(36 79)(37 152)(38 61)(39 154)(40 63)(41 119)(42 126)(43 101)(44 128)(45 103)(46 130)(47 105)(48 132)(49 107)(50 134)(51 109)(52 136)(53 111)(54 138)(55 113)(56 140)(57 115)(58 122)(59 117)(60 124)(62 94)(64 96)(66 98)(68 100)(70 82)(72 84)(74 86)(76 88)(78 90)(80 92)(81 141)(83 143)(85 145)(87 147)(89 149)(91 151)(93 153)(95 155)(97 157)(99 159)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 21)(19 22)(20 23)(41 94)(42 95)(43 96)(44 97)(45 98)(46 99)(47 100)(48 81)(49 82)(50 83)(51 84)(52 85)(53 86)(54 87)(55 88)(56 89)(57 90)(58 91)(59 92)(60 93)(61 118)(62 119)(63 120)(64 101)(65 102)(66 103)(67 104)(68 105)(69 106)(70 107)(71 108)(72 109)(73 110)(74 111)(75 112)(76 113)(77 114)(78 115)(79 116)(80 117)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 157)(129 158)(130 159)(131 160)(132 141)(133 142)(134 143)(135 144)(136 145)(137 146)(138 147)(139 148)(140 149)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 81)(37 82)(38 83)(39 84)(40 85)(61 143)(62 144)(63 145)(64 146)(65 147)(66 148)(67 149)(68 150)(69 151)(70 152)(71 153)(72 154)(73 155)(74 156)(75 157)(76 158)(77 159)(78 160)(79 141)(80 142)(101 137)(102 138)(103 139)(104 140)(105 121)(106 122)(107 123)(108 124)(109 125)(110 126)(111 127)(112 128)(113 129)(114 130)(115 131)(116 132)(117 133)(118 134)(119 135)(120 136)
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 41)(17 42)(18 43)(19 44)(20 45)(21 96)(22 97)(23 98)(24 99)(25 100)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 141)(70 142)(71 143)(72 144)(73 145)(74 146)(75 147)(76 148)(77 149)(78 150)(79 151)(80 152)(101 127)(102 128)(103 129)(104 130)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(111 137)(112 138)(113 139)(114 140)(115 121)(116 122)(117 123)(118 124)(119 125)(120 126)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 46 55)(2 54 47 9)(3 8 48 53)(4 52 49 7)(5 6 50 51)(11 20 56 45)(12 44 57 19)(13 18 58 43)(14 42 59 17)(15 16 60 41)(21 91 96 36)(22 35 97 90)(23 89 98 34)(24 33 99 88)(25 87 100 32)(26 31 81 86)(27 85 82 30)(28 29 83 84)(37 95 92 40)(38 39 93 94)(61 119 153 125)(62 124 154 118)(63 117 155 123)(64 122 156 116)(65 115 157 121)(66 140 158 114)(67 113 159 139)(68 138 160 112)(69 111 141 137)(70 136 142 110)(71 109 143 135)(72 134 144 108)(73 107 145 133)(74 132 146 106)(75 105 147 131)(76 130 148 104)(77 103 149 129)(78 128 150 102)(79 101 151 127)(80 126 152 120)

G:=sub<Sym(160)| (1,104)(2,131)(3,106)(4,133)(5,108)(6,135)(7,110)(8,137)(9,112)(10,139)(11,114)(12,121)(13,116)(14,123)(15,118)(16,125)(17,120)(18,127)(19,102)(20,129)(21,156)(22,65)(23,158)(24,67)(25,160)(26,69)(27,142)(28,71)(29,144)(30,73)(31,146)(32,75)(33,148)(34,77)(35,150)(36,79)(37,152)(38,61)(39,154)(40,63)(41,119)(42,126)(43,101)(44,128)(45,103)(46,130)(47,105)(48,132)(49,107)(50,134)(51,109)(52,136)(53,111)(54,138)(55,113)(56,140)(57,115)(58,122)(59,117)(60,124)(62,94)(64,96)(66,98)(68,100)(70,82)(72,84)(74,86)(76,88)(78,90)(80,92)(81,141)(83,143)(85,145)(87,147)(89,149)(91,151)(93,153)(95,155)(97,157)(99,159), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,21)(19,22)(20,23)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,91)(59,92)(60,93)(61,118)(62,119)(63,120)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,141)(80,142)(101,137)(102,138)(103,139)(104,140)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,41)(17,42)(18,43)(19,44)(20,45)(21,96)(22,97)(23,98)(24,99)(25,100)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,141)(70,142)(71,143)(72,144)(73,145)(74,146)(75,147)(76,148)(77,149)(78,150)(79,151)(80,152)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,46,55)(2,54,47,9)(3,8,48,53)(4,52,49,7)(5,6,50,51)(11,20,56,45)(12,44,57,19)(13,18,58,43)(14,42,59,17)(15,16,60,41)(21,91,96,36)(22,35,97,90)(23,89,98,34)(24,33,99,88)(25,87,100,32)(26,31,81,86)(27,85,82,30)(28,29,83,84)(37,95,92,40)(38,39,93,94)(61,119,153,125)(62,124,154,118)(63,117,155,123)(64,122,156,116)(65,115,157,121)(66,140,158,114)(67,113,159,139)(68,138,160,112)(69,111,141,137)(70,136,142,110)(71,109,143,135)(72,134,144,108)(73,107,145,133)(74,132,146,106)(75,105,147,131)(76,130,148,104)(77,103,149,129)(78,128,150,102)(79,101,151,127)(80,126,152,120)>;

G:=Group( (1,104)(2,131)(3,106)(4,133)(5,108)(6,135)(7,110)(8,137)(9,112)(10,139)(11,114)(12,121)(13,116)(14,123)(15,118)(16,125)(17,120)(18,127)(19,102)(20,129)(21,156)(22,65)(23,158)(24,67)(25,160)(26,69)(27,142)(28,71)(29,144)(30,73)(31,146)(32,75)(33,148)(34,77)(35,150)(36,79)(37,152)(38,61)(39,154)(40,63)(41,119)(42,126)(43,101)(44,128)(45,103)(46,130)(47,105)(48,132)(49,107)(50,134)(51,109)(52,136)(53,111)(54,138)(55,113)(56,140)(57,115)(58,122)(59,117)(60,124)(62,94)(64,96)(66,98)(68,100)(70,82)(72,84)(74,86)(76,88)(78,90)(80,92)(81,141)(83,143)(85,145)(87,147)(89,149)(91,151)(93,153)(95,155)(97,157)(99,159), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,21)(19,22)(20,23)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,91)(59,92)(60,93)(61,118)(62,119)(63,120)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,141)(80,142)(101,137)(102,138)(103,139)(104,140)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,41)(17,42)(18,43)(19,44)(20,45)(21,96)(22,97)(23,98)(24,99)(25,100)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,141)(70,142)(71,143)(72,144)(73,145)(74,146)(75,147)(76,148)(77,149)(78,150)(79,151)(80,152)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,46,55)(2,54,47,9)(3,8,48,53)(4,52,49,7)(5,6,50,51)(11,20,56,45)(12,44,57,19)(13,18,58,43)(14,42,59,17)(15,16,60,41)(21,91,96,36)(22,35,97,90)(23,89,98,34)(24,33,99,88)(25,87,100,32)(26,31,81,86)(27,85,82,30)(28,29,83,84)(37,95,92,40)(38,39,93,94)(61,119,153,125)(62,124,154,118)(63,117,155,123)(64,122,156,116)(65,115,157,121)(66,140,158,114)(67,113,159,139)(68,138,160,112)(69,111,141,137)(70,136,142,110)(71,109,143,135)(72,134,144,108)(73,107,145,133)(74,132,146,106)(75,105,147,131)(76,130,148,104)(77,103,149,129)(78,128,150,102)(79,101,151,127)(80,126,152,120) );

G=PermutationGroup([[(1,104),(2,131),(3,106),(4,133),(5,108),(6,135),(7,110),(8,137),(9,112),(10,139),(11,114),(12,121),(13,116),(14,123),(15,118),(16,125),(17,120),(18,127),(19,102),(20,129),(21,156),(22,65),(23,158),(24,67),(25,160),(26,69),(27,142),(28,71),(29,144),(30,73),(31,146),(32,75),(33,148),(34,77),(35,150),(36,79),(37,152),(38,61),(39,154),(40,63),(41,119),(42,126),(43,101),(44,128),(45,103),(46,130),(47,105),(48,132),(49,107),(50,134),(51,109),(52,136),(53,111),(54,138),(55,113),(56,140),(57,115),(58,122),(59,117),(60,124),(62,94),(64,96),(66,98),(68,100),(70,82),(72,84),(74,86),(76,88),(78,90),(80,92),(81,141),(83,143),(85,145),(87,147),(89,149),(91,151),(93,153),(95,155),(97,157),(99,159)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,21),(19,22),(20,23),(41,94),(42,95),(43,96),(44,97),(45,98),(46,99),(47,100),(48,81),(49,82),(50,83),(51,84),(52,85),(53,86),(54,87),(55,88),(56,89),(57,90),(58,91),(59,92),(60,93),(61,118),(62,119),(63,120),(64,101),(65,102),(66,103),(67,104),(68,105),(69,106),(70,107),(71,108),(72,109),(73,110),(74,111),(75,112),(76,113),(77,114),(78,115),(79,116),(80,117),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,157),(129,158),(130,159),(131,160),(132,141),(133,142),(134,143),(135,144),(136,145),(137,146),(138,147),(139,148),(140,149)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,81),(37,82),(38,83),(39,84),(40,85),(61,143),(62,144),(63,145),(64,146),(65,147),(66,148),(67,149),(68,150),(69,151),(70,152),(71,153),(72,154),(73,155),(74,156),(75,157),(76,158),(77,159),(78,160),(79,141),(80,142),(101,137),(102,138),(103,139),(104,140),(105,121),(106,122),(107,123),(108,124),(109,125),(110,126),(111,127),(112,128),(113,129),(114,130),(115,131),(116,132),(117,133),(118,134),(119,135),(120,136)], [(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,41),(17,42),(18,43),(19,44),(20,45),(21,96),(22,97),(23,98),(24,99),(25,100),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,141),(70,142),(71,143),(72,144),(73,145),(74,146),(75,147),(76,148),(77,149),(78,150),(79,151),(80,152),(101,127),(102,128),(103,129),(104,130),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(111,137),(112,138),(113,139),(114,140),(115,121),(116,122),(117,123),(118,124),(119,125),(120,126)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,46,55),(2,54,47,9),(3,8,48,53),(4,52,49,7),(5,6,50,51),(11,20,56,45),(12,44,57,19),(13,18,58,43),(14,42,59,17),(15,16,60,41),(21,91,96,36),(22,35,97,90),(23,89,98,34),(24,33,99,88),(25,87,100,32),(26,31,81,86),(27,85,82,30),(28,29,83,84),(37,95,92,40),(38,39,93,94),(61,119,153,125),(62,124,154,118),(63,117,155,123),(64,122,156,116),(65,115,157,121),(66,140,158,114),(67,113,159,139),(68,138,160,112),(69,111,141,137),(70,136,142,110),(71,109,143,135),(72,134,144,108),(73,107,145,133),(74,132,146,106),(75,105,147,131),(76,130,148,104),(77,103,149,129),(78,128,150,102),(79,101,151,127),(80,126,152,120)]])

62 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4J5A5B10A···10N10O···10V20A···20P
order12···2222244444···45510···1010···1020···20
size11···1442020444420···20222···24···44···4

62 irreducible representations

dim11111112222222222244
type++++++++++++++++-
imageC1C2C2C2C2C2C2D4D4D4D4D5C4○D4D10D10C5⋊D4D20C4○D20D4×D5D42D5
kernelC24.16D10C10.10C42C2×C4⋊Dic5C2×D10⋊C4C2×C23.D5C10×C22⋊C4C22×C5⋊D4C2×Dic5C2×C20C22×D5C22×C10C2×C22⋊C4C2×C10C22×C4C24C2×C4C23C22C22C22
# reps11121112222264288844

Matrix representation of C24.16D10 in GL6(𝔽41)

010000
100000
00233500
0061800
00001835
0000623
,
4000000
0400000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
000010
000001
,
4000000
0400000
001000
000100
000010
000001
,
090000
3200000
0022500
00161600
000066
0000351
,
0320000
3200000
0025200
00161600
000066
0000135

G:=sub<GL(6,GF(41))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,23,6,0,0,0,0,35,18,0,0,0,0,0,0,18,6,0,0,0,0,35,23],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,32,0,0,0,0,9,0,0,0,0,0,0,0,2,16,0,0,0,0,25,16,0,0,0,0,0,0,6,35,0,0,0,0,6,1],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,25,16,0,0,0,0,2,16,0,0,0,0,0,0,6,1,0,0,0,0,6,35] >;

C24.16D10 in GAP, Magma, Sage, TeX

C_2^4._{16}D_{10}
% in TeX

G:=Group("C2^4.16D10");
// GroupNames label

G:=SmallGroup(320,588);
// by ID

G=gap.SmallGroup(320,588);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,254,387,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d*c=c*d,f^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations

׿
×
𝔽